A Tutorial On R Package “QTLRel”
(V1.13 or Later)

Riyan Cheng

August 7, 2023

8

9

Contents
Introduction
Install and Load Package
Data Formats
Statistical Models
Condensed Identity Coefficients
Variance Components
Performing Genome Scans
Empirical Thresholds

Plotting

10 Miscellaneous

11 Citation

13

15

16

20

1 Introduction

Advanced intercross lines (AlLs) are an ideal resource for fine-scale mapping of quantitative
trait loci (QTL). Unlike populations such as Fs, individuals in an AIL population are ge-
netically unequally related. The unequal relatedness among individuals requires appropriate
statistical models and computational tools. We have developed a computationally efficient R
package ‘QTLRel’ for analysis of quantitative AIL data. Users can use the package to calcu-
late condense identity coefficients (CIC) as well as kinship coefficients from large pedigrees,
estimate variance-covariance component parameters, perform a genome-scan for QTL, assess
genome-wide significance (e.g., gene dropping) and plot results.

Though initially designed for analysis of AIL data, almost all of the major functions
have a very general usage. For instance, the function scanOne can be used to perform
a genome scan for nuclear family data using linear mixed models (LMM) where relatedness
(or population structure) is a concern as long as relationship matrices are available.

To help users to understand and use the package ‘QTLRel’, we provide this tutorial
with concrete examples that illustrate the process of data analyses using the package. The
examples are not isolated; earlier examples may also be a preparation for later ones. We
recommend inexperienced R users study the entire tutorial to write your own program. How-

ever, this tutorial should not substitute for the R documentation; instead, it should serve as

supplemental material.

Codes in this tutorial can be easily adapted for custom data.

2 Install and Load Package

We can install the package from within R using the command
> install.packages("QTLRel",dependencies=TRUE)

and load the package using the command

> library(QTLRel)

Package source and documentation are available on CRAN (here). We may need gdata for

re-ordering so we load it as well.

> library(gdata)

3 Data Formats

In this tutorial, we’ll use part of our real data in Fg, including a pedigree ‘pedF8’, phenotype
data ‘pdatF8’, genotype data ‘gdatF8 and a genetic map ‘gmapF8’. The sample size is

http://cran.r-project.org/web/packages/QTLRel/

approximately 500.

The pedigree should be a data frame that includes individual ID ‘id’, father ‘sire’ and
mother ‘dam’. Other information such as sex and generation is optional. If given, ‘sex’
should be “M”, “Male” or 1 for a male and “F”, “Female” or 2 (other than 0 and 1) for a
female, and ‘generation’ can be numeric 0, 1, 2, ... or non-numeric “F0”, “F17, “F2”7 ...,
which should be in an increasing order. The special symbol 0 is reserved for unknown IDs.
If a sire/dam is an inbred founder, its ID should be tagged by character ‘i’. The following

are a few lines in the pedigree ‘pedF8’.

> data(miscEx)
> pedF8[c(1:3,131:133),]

id sex generation sire dam family

1 1 M F1 11 21 F1
2 2 F F1 11 21 F1
3 16152 F F2 1 2 F1-16
131 18278 F F2 1 2 F1-25
132 18279 F F2 1 2 F1-25
133 18280 F F2 1 2 F1-25
>

The sire with ID “1i” and dam with ID “2i” indicate that they are inbred. To obtain the
same kinship coefficients as well as condense identify coefficients, we can also use the following

pedigree.

> pedF8.1[1:5,]

id sex generation sire dam family

1 1 0 F1 0 O F1
2 16152 F F2 1 1 F1-16
3 16153 F F2 1 1 Fi1-16
4 16154 F F2 1 1 F1-16
516149 M F2 1 1 F1-16

Note that Fy’s are created by selfing one F; individual so as to ensure the same identify
coefficients as obtained from a pedigree that starts with two inbred lines, which in turn have
to be created by many generations of brother-sister mating (or selfing). As a problem, this
pedigree can’t be used to simulate X-chromosome (e.g. in gene dropping). Alternatively,
we can add 30-50 generations of selfing (or 100-150 generations of brother-sister mating)
to create inbred lines (see pedF8.2 for this pedigree with 150 generations of brother-sister
mating). The following results show that the above pedigrees lead to basically identical

kinship coefficients.

> ksp<- kinship(pedF8, ids=rownames(pdatF8), all=TRUE, msg=FALSE)

> ksp.1<- kinship(pedF8.1, ids=rownames(pdatF8), all=TRUE, msg=FALSE)
> ksp.2<- kinship(pedF8.2, ids=rownames(pdatF8), all=TRUE, msg=FALSE)
>
>

dim(ksp)
[1] 500 500
>
> sum(abs (ksp-ksp.1))
(11 ©
> sum(abs (ksp-ksp.2))
[1] 6.869755e-10
> sum(abs(ksp.1-ksp.2))
[1] 6.869755e-10

The genotype data should be a matrix or a data frame, with each row representing an
observation and each column a marker locus. The row names (optional) can be individual IDs
and the column names should be marker names. The following are five lines in the genotype
data ‘gdatF8’. Genotypes 1, 2 and 3 correspond to “AA”, “AB” and “BB”.

> gdatF8[1:5,1:5]
rs6269442 rs13475701 rs13475706 rs3716083 rs3722996

33461 3 3 3 3 3
33615 2 2 2 2 2
33649 3 3 3 3 3
35608 1 1 1 1 2
31805 2 2 2 2 2
>

¢ b

The phenotype data ‘pdatF8’ has four columns: ‘sex’; ‘age’, ‘bwt’” and ‘cage’. The variable
‘bwt’ is the body weight of an individual, ‘age’ is the age (in days) when body weight was
measured, and ‘cage’ is the cage where the individual was bred. The following are five lines
in the phenotype data ‘pdatF8’. Note that there were a total of 163 cages.

> pdatF8[1:5,]
sex age but cage
33461 F 70 18.6 BDF8-147

33615 M 81 24.2 BDF8-133
33649 F 80 16.0 BDF8-141
35608 F 64 18.6 BDF8-4
31805 M 76 26.2 BDF8-T71

>

> length(unique (pdatF8$cage))
[1] 160

>

The genetic map should be a data frame with colums ‘snp’, ‘chr’, ‘dist’, where ‘snp’ is the
SNP (marker) name, ‘chr’ is the chromosome where the ‘snp’ is located, and ‘dist’ is the
genetic distance in centi-Morgan (¢cM) on the chromosome. In ‘gmapF8’; the extra column
‘phyPos’ is the physical location (in bp; build 37) of the SNP on the chromosome.

> gmapF8[815:819,]

snp chr dist phyPos37
815 1rs3725637 18 18.692 34588212
816 rs13483299 18 19.461 36279727
817 1rs3664831 18 19.461 37453885
818 1rs3699816 18 21.088 39473386
819 rs13483319 18 21.395 41067707
>

The above data comes with R package QTLRel and can be loaded with the following com-

mand

> data(miscEx)

4 Statistical Models

Consider the following statistical model (see Cheng et al (2011) for the general model which
this package can deal with)

yzzleﬁ_‘_x:a’*_‘_zz*d*—i_ul—i_ew Z:17277n (1)

where y; is the trait value for the i-th individual, z; represents covariates (e.g. sex) and
are the corresponding effects, x} is 1, 0 or —1 if the genotype at the putative QTL is AA,
Aa or aa and a* is the additive effect of the putative QTL, 2 is 1 if the genotype at the
putative QTL is heterozygous or 0 if the genotype is homozygous and d* is the dominance
effect, u; represents polygenic variation, and ¢; denotes environmental effect. Assume that
€ ~ N(0,0%),i = 1,2,--- ,n are independent, and u = (uy,us, - ,u,) ~ N,(0,G) with
G = (gi;) and is independent of € = (€1, €2, -+ ,€,)". It is known that in general (e.g. Abney
et al, 2000; Cheng et al, 2010)

gij = 2(I)Z'j0'2 + Aijjo—s + (4Aij’1 + Aij73 + Amﬁ)COU(G, d)

4

+A107 4+ (Aiji + DNijo — fifi)i
9a,ii0- + Ga,ij05 + GadijCov(a, d)

where ®,; is the kinship coefficient between the ¢-th and j-th individuals, f; is the inbreeding
coefficient for the i-th individual, and A;;’s are condensed identity coefficients as defined in
Lynch and Walsh (1998, pp.133) and can be calculated from the pedigree data.

5 Condensed Identity Coeflicients

To fit model (1), we need identity coefficients in (2). Condensed identity coefficients (cic)

can be calculated from the pedigree, using function cic.

Usage:
cic(ped,ids,inter,df=3,ask=FALSE,verbose=FALSE)

The ‘ped’ is the pedigree that should have at least three components ‘id’, ‘sire” and ‘dam’.
Preferably, generation information is provided. Otherwise, the program will try to derive
generation information based on the pedigree. The ‘ids’ specifies the IDs of the individuals
for which to calculate the Jacquard condensed identity coefficients. If ‘ids’ is not specified, all
individuals in the pedigree ‘ped’ will be considered. It is recommended that ‘ids’ be specified
only for interested individuals because extra IDs may result in overwhelming computation.
Condensed identity coefficients can be derived from generalized kinship coefficients. Bottom-

up and top-down are two strategies for calculating generalized kinship coefficients from a
pedigree. The bottom-up approach starts from the target individuals and moves up till the
founders. It requires minimal storage but the computational load can be approximately
exponential in the number of generations. The bottom-up approach is not realistic if the
number of generations is large and the number of individuals in each generation is not small.
The top-down approach starts from founders and moves down to the target individuals. The
computational load is approximately linear in the number of generations. However, the in-
termediate generalized kinship coefficients need to be stored, which may require extensive
storage if the number of individuals in a generation is large. This function allows for a hybrid
of both bottom-up and top-down approaches by specifying intermediate generations via the
argument ‘inter’ such that generations of too many members are passed over. If ‘inter’ is
missing, the function will use ‘df’ to determine the “optimal” configuration of ‘inter’. The
default value of ‘inter’ is 3. If ‘df = 0, then there will be no intermediate generations, which
results in implementation of the bottom-up approach. If ‘df’ is large, then all generations

will be used as intermediate generations, which calls for the top-down approach.

We can set ‘ask = TRUE’ to see if ‘inter’ produced by the program is feasible. If not, we
can tune ‘df’ until it is satisfactory. Setting ‘verbose = TRUE’ will print out some messages
to track the running process.

The output of cic is a matrix G of nine columns with G, j] being the j-th Jacquard
identity coefficients. Once we finish cic, we can run genMatrix to extract five genetic
matrices, including additive genetic matrices “AA”, dominance genetic matrix “DD” and
other three that are described in Abney et al (2000), as well as inbreeding coefficients “ib”.

Tips: You may need the administrative privilege to run this function on systems such

as Windows 7 1.

Example 1. Calculate condensed identity coefficients from a pedigree.

> # only interested individuals in F8

> id<- rownames (pdatF8)

> id[1:5]

[1] "33461" "33615" "33649" "35608" "31805"

> # check if phenotype and genotype data are from the same sample

> sum(!is.element (id,pedF8%id))

(11 ©

> sum(!is.element (id,rownames(gdatF8)))

(1] o

> sum(!is.element (rownames(gdatF8),id))

(1] ©

>

> # running

> idcf<- cic(pedF8,ids=id,df=3,ask=TRUE,msg=TRUE)

Suppose !0, !'1, 'M and !Male stands for female...

id sire dam sex generation old.id

381 381 266 227 M F7 32889

Above should be dam(s)...

Total free disk space needed: 593.629 Mb...
Carry-over number of individuals in each generation:
-999 F1 F2 F3 F4 F5 F6 F7 F8

f your system is Windows Vista or 7, you may need to start R as follows: 1) click “start” menu; 2) go
to all programs; 3) go to R; 4) go the R version (e.g., R 2.9.2); 5) right click on it; 6) choose “Run as...” from
the drop-down menu; 7) select “Administrator”.

1 3 73 65 45 37 54 145 500

Will go over generations: -999F1F2F4F5F6F7F8
Continue? Yes/No: Yes

This may take hours or days to finish!

Please wait or press ’ctrl-c’ to abort...

F1 F2 F4 F5 F6 F7 F8

Findshing. ..o e
> # extract genetic matrices
> gmF8<- genMatrix(idcf); names(gmF8)
(1] "ib"™ "AA" "DD" "AD" "HH" "MH"
> dim(gmF8$AA)
[1] 500 500
> gmF8$AA[1:3,1:5]

33461 33615 33649 35608 31805

33461 1.504395 1.026367 1.069580 1.038330 1.060547
33615 1.026367 1.504883 1.013184 1.013184 1.015381
33649 1.069580 1.013184 1.503906 1.066895 1.044922

Genetic matrices can also be estimated using genotypic data in the sense of identity-by-
state (IBS). The function genMatrix has this capability in case there are only two founder
strains or genotypes are only recorded as, say, “AA”, “AB” and “BB” (QTLRel.0.2.7 or
later).

6 Variance Components

Once we have genetic matrices, we can proceed to estimate variance components that are
needed in a genome scan. Estimating variance component parameters can be achieved via

function estVC.

Usage:
estVC(y,x,v=1list (E=diag(length(y))),initpar,nit=25,
control=list () ,hessian=FALSE)

where ‘y’ is a numeric vector or a numeric matrix of one column that represents a phenotype,
and ‘x’, if not missing, is a vector representing a covariate or a data frame or matrix each
column of which represents a covariate. ‘v’ is a list of interested variance components, such
as additive and dominance genetic matrices, with “E” denoting the residual matrix and
always being included. If interested in Hessian matrix, we can set ‘hessian = TRUE’. Here

is an example.

Example 2. Estimate variance components.

idx<- !is.na(pdatF8[,"bwt"])
pdatTmp<- pdatF8[idx,] # remove missing values
gdatTmp<- gdatF8[match(rownames (pdatTmp) ,rownames(gdatF8)),] #matching

ii<- match(rownames (pdatTmp) ,rownames (gmF8$AA))
ve<- estVC(y = pdatTmp[,"bwt"], x = pdatTmp[,c("sex","age")],
v=1list (AA=gmF8$AA[ii,ii] ,DD=gmF8$DD[ii,ii]))

vc$value # likelihood

[1] -978.2822
> vc$par # parameter estimates

(Intercept) sexM age AA DD E
9.106219e+00 5.944458e+00 1.093796e-01 3.943530e+00 7.154003e+00 5.569893e-08

>
>
>
>
>
>
+
>

In the above example, the trait of interest is body weight ‘bwt’. We include both ad-
ditive and dominance genetic variance components but ignore the other three by setting
HH=NULL,AD=NULL and MH=NULL. We also consider ‘sex’ and ‘age’ as covariates without ques-
tioning whether it makes sense to do so. Of course, we can test an effect as illustrated
below.

Example 3. Include non-genetic variance components.

> ranMtr<- rem(“cage, data=pdatTmp) # matrice for random effect (cage)
> names (ranMtr)

[1] "cage"

> dim(ranMtr$cage)

[1] 496 496

> vc.cage<- estVC(y = pdatTmpl[,"bwt"], x = pdatTmp[,c("sex","age")],

+ v=1list (AA=gmF8$AA[ii,ii] ,DD=gmF8$DD[ii,ii], cage=ranMtr$cage))

>

> 2x(vc.cage$value - vc$value) # likelihood ratio test for cage effect
[1] 20.43798

The above example demonstrates how to include ‘cage’ as a non-genetic random effect, and
also gives the likelihood ratio test statistic for ‘cage’ effect. However, we will ignore ‘cage’
effect as we move on.

7 Performing Genome Scans

Now we come to the point to perform a genome scan using function scanOne.

Body Weight

<
o
o
[aV]
< _
N
[
o
= o | ..
- 8
-
o] &
: - s A e :
S L s o s es b .
- s, I A - [H s -
o % o | ase g I ¢ B
3 8 2. | g 2 e B 3, .
¢ g |- % L0 - 3 R
o | K] %fga £ ° - &°
o
— T T T T T T T T T 1
~— 0 o o mevmcol\ooosg
Chromosome

Figure 1 Sex and age are non-interactive covariates.

Usage:
scanOne(y, x, gdat, prdat = NULL, vc = NULL, intc = NULL,
numGeno = FALSE, test = c("None","F","LRT"),

minorGenoFreq = 0, rmv = TRUE)

The meanings of ‘y’ and ‘x’ are the same as in estVC. ‘gdat’ is genotype data in the format
described previously. It is ignored if an object ‘prdat’ from genoProb is specified as an
argument. ‘vc’ is an object from estVC or aicVC, or an estimated variance-covariance matrix
induced by relatedness and environment. ‘intc’, if provided, specifies covariates that interact
with QTL. Note that if we treat numerical coding of genotype as numerical value, we should
set ‘numGeno = TRUE’.

The function will return a list with at least the following components:

1) F or LRT: the F-test or likelihood ratio test (LRT) statistic at the SNP (marker) if

‘test” is “F” or otherwise
2) pval: P-value at the snp (marker) if ‘test’” is “F” or “LRT”

3) parameters: estimated parameters at all scanning loci, including additive effect ‘a’ and
dominance effect ‘d’ if ‘prdat’ is not “NULL”.

If the genome scan is based on genotype data ‘gdat’, then we need make sure there are not

missing genotypes. Otherwise, we can call function genoImpute to impute missing genotypes.

9

Usage:
genoImpute (gdat,gmap,prd=NULL, step=Inf,gr=2,pos=NULL,
method=c("Haldane","Kosambi") ,na.str="NA",verbose=FALSE)

where ‘gdat’ is genotype data, ‘gmap’ is genetic map, and ‘prd’ is an object from genoProb
if not “NULL”. If we only impute missing genotypes at marker loci, we can specify ‘step =
Inf’ (by default). The argument ‘gr’ indicates which generation is under consideration. The
missing genotype is randomly assigned with a probability conditional on the genotypes of
the flanking makers. Currently, this function only works for AIL. Here is an example.

Example 4. Genome scan without interactive covariates.

> sum(is.na(gdatTmp)) # number of missing genotypes
[1] 140
> gdatTmpImputed<- genolImpute(gdatTmp,gmapF8,gr=8,na.str=NA)

>

> # genome scan

> 1rt<- scanOne(y=pdatTmp[,"bwt"], x=pdatTmp[,c("sex","age")],
+ gdat=gdatTmpImputed, vc=vc)

>

> plot(1lrt,gmap=gmapF8,main="Body Weight") # plotting

>

In the above example, we first call genoImpute to impute 142 missing genotypes and then
perform a genome scan. The scan takes both sex and age as non-interactive covariates. We
can also include interactive covariates as illustrated in the following example where age is a
non-interactive covariate but sex is an interactive covariate. Figure 1 is the Manhattan plot
of the mapping results.

Example 5. Genome scan with an interactive covariate.

> # genome scan: interactive sex

> 1rt.sex<- scanOne(y=pdatTmpl[,"bwt"], x=pdatTmp[,c("age")],
+ gdat=gdatTmpImputed, intc=pdatTmp[,c("sex")],vc=vc)

>

> plot(lrt.sex,gmap=gmapF8,main="Body Weight") # plotting

>

Then QTL by sex interaction effect can be easily obtained as follows.

Example 6. Extract test statistics.

10

Body Weight (HK Method)

20

LOD

1.0

05

0.0
\

Chromosome

Figure 2 Sex and age are non-interactive covariates.

> # QTL by sex interaction

> 1rtTmp<- 1lrt

> 1rtTmp$LRT<- 1lrt.sex$LRT - 1rt$LRT

>

> plot(lrtTmp, gmap=gmapF8,main="Body Weight: QTL by Sex Effect") # plotting
>

In case of AIL mapping populations, the package ‘QTLRel’ can also perform Haley-Knott in-
terval mapping. This is achieved by first calling genoProb to calculate genotype probabilities

and calling scanOne to scan the genome.

Usage:
genoProb(gdat,gmap,step=Inf,gr=2,pos=NULL,method=c("Haldane",
"Kosambi") ,verbose = FALSE)

where ‘gdat’ is genotype data whose entry should be 1, 2, 3 or 0, corresponding to “AA”,
“AB”, “BB” or missing genotype, and ‘gmap’ is a genetic map. The argument ‘step’ defines
scanning loci such that the “historical” genetic distance between any two adjacent loci for
which probabilities are calculated is not larger than ‘step’. If ‘step = Inf’ (or large enough),
probabilities will only be calculated at loci in both the columns of ‘gdat’ and the rows of

‘emap’. If ‘step’ is small, a large set of putative loci will be considered, including all loci

11

defined by the columns of ‘gdat’ and the rows of ‘gmap’. The output is a list with the

following components:

1) pr: a 3-D array with the first dimension equal to that of ‘gdat’; the second corresponding
to three genotype and the third to the putative loci. The probabilities will be -1 if
not imputable, which happens when the genotype data is missing at all loci on the

chromosome.
2) chr: chromosome where the locus is located.
3) dist: genetic distance (in cM) of the locus from the first locus on the chromosome.
4) snp: SNP (marker) that the locus represents.

Again, it is currently only suitable for advanced intercross lines. Let’s look at an example.

Example 7. (Haley-Knott method) Genome scan without interactive covariates.

> gdTmp<- gdatTmp
> gdTmp [is.na(gdTmp)]<- 0
> unique(c(as.matrix (gdTmp)))

[1] 3210
> prDat<- genoProb(gdat=gdTmp,gmap=gmapF8,step=3,gr=38)
>

> # genome scan: Haley-Knott method
> 1rtHK<- scanOne(y=pdatTmpl[,"bwt"], x=pdatTmp[,c("sex","age")],

+ prd=prDat, vc=vc)

>

> plot(lrtHK,main="Body Weight (HK Method)") # plotting
>

In the above example, we define ‘step = 3’, which results in 1741 scanning loci including the
847 markers. Also note that we don’t need genetic map information in plotting because the
information is contained in the object “IrtHK”. Figure 2 displays the mapping results. The
following is another example using Haley-Knott interval mapping.

Example 8. (Haley-Knott method) Genome scan with sex being an interactive covariate.

genome scan: Haley-Knott method, interactive sex
1rtHK.sex<- scanOne(y=pdatTmpl[,"bwt"], x=pdatTmp[,c("age")],
prd=prDat, intc=pdatTmp[,c("sex")],vc=vc)

vV V + VvV V

plot(1lrtHK.sex,main="Body Weight (HK Method)") # plotting

12

>

> # Haley-Knott method, QTL by sex interaction

> 1rtHKTmp<- 1rtHK

> 1rtHKTmp$LRT<- 1lrtHK.sex$LRT - 1rtHK$LRT

>

> plot (1rtHKTmp,main="Body Weight (HK Method): QTL by Sex Effect")
>

8 Empirical Thresholds

Empirical thresholds can be obtained by permutation. This simply repeats the genome scan
with genotype data being shuffled among individuals. The function nullSim in the package
can be called to estimate thresholds. However, we may write our own code to gain a better
control. First, let’s look at two permutation examples.

Example 9. Permutation test using marker genotype data.?

> nn<- nrow(gdatTmpImputed) # sample size
> ntimes<- 1000 # number of simulations
> cvMtr<- NULL # matrix to save results of permuted data

> for(n in 1:ntimes){

+ idx<- sample(1l:nn,replace=FALSE) # permutation

+ tmp<- scanOne(y=pdatTmp[, "bwt"],x=pdatTmp[,c("sex","age")],
+ gdat=gdatTmpImputed[idx,], vc=vc)

+ cvMtr<- rbind(cvMtr, tmp$LRT)

+ cat(n,"/",ntimes,"\r") # track process

+ }

In the above example, we shuffle the order of observations and store the shuffled order

9

in variable “idx” so that “gdatTmplmputed[idx,|” is the permuted genotype data from
“edat Tmplmputed”. The code for genome scan is the same otherwise. The results are
stored in the matrix “cvMtr”. This process is repeated “ntimes = 1000” times. The 0.05

genome-wide significance threshold can be estimated by

> quantile(apply(cvMtr,1,max),0.95) # in LRT
95%
18.76991

2The permutation test have been regarded as a “gold” standard to assess statistical significance. The
above approach, however, is computationally intensive. We and others have shown that naive permutation
tests provide a great approximation and thus can be considered in practice.

13

> quantile(apply(cvMtr,1,max),0.95)/(2*log(10)) # in LOD
95%
4.134378

Example 10. Permutation test in Haley-Knott interval mapping.

> # for HK method...
> cvMtrHK<- NULL
> for(n in 1:ntimes){

+ idx<- sample(1:nn,replace=FALSE)

+ prdTmp<- prDat

+ prdTmp$pr<- prdTmp$pr[idx,,]

+ tmp<- scanOne(y=pdatTmp[,"bwt"], x=pdatTmp[,c("sex","age")],
+ prd=prdTmp, vc=vc)

+ cvMtrHK<- rbind(cvMtrHK, tmp$LRT)

+ cat(n,"/",ntimes,"\r") # track process

+ }

Since we have a pedigree here, we can perform gene dropping test. In the following example,
we first call genoSim, which does gene dropping, to generate genotype data set “gdatTmp”,
and then perform the genome scan using “gdatTmp”. This example can be easily adapted
to the Haley-Knott version.

Example 11. Gene dropping test.

> ids<- rownames(gdatTmp) # relevant individual IDs

> ids<- setdiff(ids, pedF8%id[pedF8$sire == "32089"])

> idx<- match(ids, rownames(gdatTmp))

> pdTmp<- pdatTmp[idx,]

> idx<- match(ids, rownames(gmF8$AA))

> vcTmp<- estVC(y = pdTmp[,"bwt"], x = pdTmp[,c("sex","age")],
+ v=1ist (AA=gmF8$AA[idx,idx], DD=gmF8$DD[idx,idx]))

> pedR<- pedRecode(pedF8, ids=ids) # recode the pedigree

> cvMtrGD<- NULL

> for(n in 1:ntimes){

+ gdTmp<- genoSim(pedR, gmapF8, ids=ids)

+ tmp<- scanOne (y=pdTmp[,"bwt"], x=pdTmp[,c("sex","age")],
+ gdat=gdTmp, vc=vcTmp)

+ cvMtrGD<- rbind(cvMtrGD, tmp$LRT)

+ cat(n,"/",ntimes,"\r")

+ }

14

Body Weight

© e o
<
o °
o o o o ©
° °
° ° °
v _| °
Iy ° ° o
° °
o e o
2 ° .
° ° 8 o)
o_ _ o o g 5)
N i=3 o =)
8 o o
° ° o |o% °l 8
(=) o o
S CE 8 °
— o _| . oo | g ° °
~— 9| - ° 8
3 4 op®
°,° ©o Y
% o |
0o o . S ° ° B
< _| & & o |o ° o
— 83, 8|go|o 9 ole®
38 Sl JRTBl8° % |eo BRI
S of © g 48 5
s ER o8 o
° @ L/ lo® 9 o & °
Pe [2°7]° 1% d.29 9L
2 ©cot 76 °cPswm | ©4 B |fe| o |o
o Q o6 1 8 .a®
©8q boo 4 ofle R o g ool ° @
p O o oe° | & 3 of] °
82 % & LI ol | B0 odo
E§ 2 o %9 ok & & 1% o8 & B
g& 3 > 5
= F2|ee g 8e o8 B 2 g
IS}
T T T T T T T T T T L
— N ® &+ 10 © M~ © o O +—
Chromosome

Figure 3 Plotting scanOne objects. Sex and age are non-interactive covariates.

Note that in this example twelve samples are excluded because the parents of their father
“32089” are missing in the pedigree, which is not desirable. Users have to simulate genotype
data for these samples in other suitable methods. By the way, pedR in genoSim can be

replaced by pedF8; see QTLRel package documentation for more information.

9 Plotting

Object of scanOne can be plotted using R function plot, as illustrated in example 4 and 7.
Here is one more example, in which we feed a threshold with ‘cv’ and tune the symbol size
with ‘cex’.

Example 12. Plotting scanOne objects (Figure 3).

> plot(lrt,cv=3.2,gmap=gmapF8,main="Body Weight (HK Method)",cex=1)

We can gain more control using function plotit. Here are two examples of calling function
plotit. Users may check the documentation (here) for its usage.

Example 13. Plotting mapping results using function plotit (Figure 4).

> idx<- match(colnames(gdatTmpImputed) ,gmapF8$snp)
> Tmp<- data.frame(chr=gmapF8$chr[idx],
+ dist=gmapF8$dist [idx],

15

http://cran.r-project.org/web/packages/QTLRel/QTLRel.pdf

Mapping Plot of Body Weight

0o
o

000
o

10
0 000
o
[
o
@0

LRT

000 0
o
o
0
o
0
@ 00
©
o 0 o0
0o

@

0090, 9 00
00 ®°
§000 @ 0 wo

o - 21980
4 et SRR
KE T oy ol T& 4
° e o °o
o 8% %L £%|sap g ©
1 2 3 4 5 6 7 8 9 11 13 15 17 19

Chromosome

Figure 4 Plotting mapping results using function plotit. Sex and age are non-interactive
covariates.

+ y=1rt$LRT)
> Tmp<- Tmp [order (Tmpchr,Tmpdist) ,] # order by chromosome and distance
>
> plotit(Tmp, cv=15, main="Mapping Plot of Body Weight", xlab="Chromosome",
+ ylab="LRT", col=as.integer(Tmp$ch)%/2+2,type="p",1lty=2)

Example 14. Plotting mapping results by chromosome using function plotit (Figure
5).

> library(lattice) # dependency package
>

> tmp<- plotit(Tmp,cv=12,type="p",1lty=2,col=4,cex=0.65,
+ xlab="Genetic Position (cM)",ylab="LRT",

+ main="Body Weight",bychr=TRUE)

> print (tmp)

10 Miscellaneous

In the package, there are a few other functions that may be useful.

16

Body Weight

0 20 40 60 80100 0 20 40 60 80100
T S T T T T T T NN S TS S S ST Y TS NN S Y Y Y N
16 17 18 19
— — 15
- R — 10
1 ® “o N §QF & 0o -5
e 8 ° . B BSDE
° o &£ - % ° Su 8 Bopap O R ° & Lo
11 12 13 14 15
15 0 -
,,, &ee,,,,,,,,,
10 - . g B L -
5 — an [0 -
u!e & ° Dgo g o ?,
— 0 - & T8 o Fo 0B 0 L @ i%u?w-.%s % L
o 6 7 8 9 10
_ A - 15
_ 2 < - 10
i 2 8 o8 o ® E L
%, - o y & Ss‘,% Y e 33 & 5
e P 8, ° °o g’ ¢ oetge & ® Do L o
1 2 3 4 5
15 —
7 s . L
5 & 8y £ . -
N o 8 ° ES ° ® @ °
° o o © oS @ 8 oo o ° o oo ® o, o g . °o ¥
EECY mﬂb i ° et s d | FougestdE o L ey -
T T
0 20 40 60 80100 0 20 40 60 80100 0 20 40 60 80100

Genetic Position (cM)

Figure 5 Plotting mapping results by chromosome using function plotit. Sex and age are
non-interactive covariates.

e kinship calculates kinship coefficients from a pedigree.

e mAIC performs multiple QTL model section via AIC criterion. This function allows

additive covariates but not interactive covariates.

e lodci calculates LOD support intervals.

Example 15. LOD support intervals based on Haley-Knott interval mapping.

> Tmp<- data.frame(chr=1rtHK$chr,

+ dist=1rtHK$dist,

+ y=1rtHK$LRT/ (2%1og(10)),

+ stringsAsFactors=TRUE) # convert to LOD
> Tmp$chr<- reorder (Tmp$chr)

> Tmp<- Tmp [order (Tmpchr, Tmpdist) ,]

> 1lc<- lodci(Tmp,cv=3.2,1l0d=1.5,drop=1.5)

>

lc

chr lower wupper index
1 10 20.82247 36.082 956
2 14 7.08000 15.830 1261

17

e gls can estimate QTL effects and standard errors by fitting a multiple QTL model, or
perform significance tests. The following example show how to fit a model including
two putative QTL at the 674-th and 1365-th scanning loci.

Example 16. Estimated QTL effects and standard errors.

> # multiple QTL model estimates
> dtfTmp<- data.frame(

+ y=pdatTmp[, "bwt"],
age=pdatTmp[, "age"],
sex=pdatTmp[, "sex"],

+ 4+ 4+ 4+ o+ 4+

+)

al=prDat$pr[,1,1lc$index[1]]-prDat$pr[,3,1c$index[1]],
d1=prDat$pr[,2,1c$index[1]],
a2=prDat$pr[,1,lc$index[2]]-prDat$pr[,3,1c$index[2]],
d2=prDat$pr[,2,1c$index[2]]

> estl<- gls(y~age+sex+al+dl+a2+d2,data=dtfTmp,vc=vc)

> est2<- gls(y~age+sex*(al+dl+a2+d2) ,data=dtfTmp,vc=vc)

> estl # with age and sex being additive covariates

Estimate Std. Error t value Pr(>ltl)
(Intercept) 9.5185452 2.29047260 4.155712 3.829545e-05
age 0.1058518 0.01601744 6.608535 1.018670e-10
sexM 5.8911437 0.14344713 41.068398 1.843534e-160
al 0.4781028 0.12872596 .714114 2.274702e-04
d1 0.1831207 0.15539526 1.178419 2.392039e-01
a2 -0.4548940 0.11694440 -3.889831 1.142236e-04
d2 -0.2820369 0.15433786 -1.827399 6.825028e-02
> est2 # with sex being an interactive covariate
Estimate Std. Error t value Pr(>ltl)
(Intercept) 9.483656508 2.27997325 4.159547277 3.773070e-05
age 0.105219167 0.01593714 6.602137851 1.067844e-10
sexM 5.953009844 0.25492814 23.351717356 2.475143e-81
al 0.186598226 0.16324452 1.143059674 2.535789e-01
d1 0.220511463 0.21146193 1.042795105 2.975638e-01
a2 -0.545499464 0.15585031 -3.500150049 5.079906e-04
d2 -0.224303662 0.20958065 -1.070249870 2.850403e-01
sexM:al 0.609847484 0.20964349 2.908974159 3.792978e-03
sexM:d1 -0.001905152 0.29002083 -0.006569016 9.947614e-01
sexM:a2 0.172029731 0.19550303 0.879933842 3.793318e-01

18

sexM:d2 -0.127489530 0.29337596 -0.434560248 6.640753e-01

gtlVar calculates variance induced by QTL in a quantitative trait.

Example 17. QTL induced variation based on Haley-Knott interval mapping.

ii<- match(rownames (pdatTmp) ,rownames (gmF8$AA))
vc0<- estVC(y = pdatTmp[,"bwt"], v=1ist(AA=gmF8$AA[ii,ii], DD=gmF8$DD[ii,ii]))
nb<- length(vcO$par) - length(vcO$v)
nr<- nrow(vcO$y)
cov<- matrix(0,nrow=nr,ncol=nr)
for(i in 1:length(vcO$v))
cov<- cov + vcO$v[[i]]*vcO$par [nb+i]
tv<- mean(diag(cov)) # total variation
eff<- NULL # QTL effects
for(n in 1:length(lrtHK$par)){
eff<- rbind(eff,lrtHK$par[[n]] [c("a","d")])
}
eff<- data.frame(eff) # data frame!
qv<- qtlVar(eff,prDat$pr) # per QTL variation
qv[lc$index] /tv*100 # per QTL heritability
[1] 0.7474018 0.7317993

VvV V. VvV + 4+ V vV VvV 4+ V V V V V V

The last command calculates variation percentage in body weight that are associated

with two highest peaks in figure 2

scanTwo calculates QTL-by-QTL interaction. Sometimes, people are interested in epis-
tasis. The package provides this facility though it can be computationally expensive if
the number of scanning loci is large. In the following example we calculate epistatic

effect with sex and age being additive covariates and plot the results.

Example 18. Calculating epistasis and plotting.

qqInt.1<- scanTwo(y=pdatTmpl[,"bwt"], x=pdatTmp[,c("sex","age")],
gdat=gdatTmpImputed, vc=vc)

>
+
>
> qqInt.2<- scanTwo(y=pdatTmpl[,"bwt"], x=pdatTmp[,c("sex","age")],
+ prdat=prDat, vc=vc)

>

19

Body Weight: Epistasis (A) Body Weight: Epistasis (B)

Chromasomes Chromosomes
- 4. 17 X ¥ooud 8 T Bof1 4. 17 X

8 7 8 H

X
X

12 14 16 18
12 14 16 18

Chromosomes
10
5
Chromosomes
10

2 3 4567 8

2 3 4567 8

1
1

Figure 6 Plotting scanTwo objects. Sex and age are non-interactive covariates.

> par(mfrow=c(1,2))
> plot(qgInt.1/(2%log(10)),
+ gmap=gmapF8[match(rownames(qqInt.1) ,gmapF8$snp),],
main="Body Weight: Epistasis (A)\n\n",
xlab="", ylab="", col=heat.colors(8, rev=TRUE))
plot(qqlnt.2/(2%1log(10)),
gmap=data.frame (snp=prDat$snp, chr=prDat$chr, dist=prDat$dist),
main="Body Weight: Epistasis (B)\n\n",
xlab="", ylab="", col=heat.colors(8, rev=TRUE))

+ 4+ 4+ vV o+ 4+

Note that we need a genetic map ‘gmap’ to plot the scanTwo objects. Refer to the R

documentation for usage of scanTwo.

11 Citation

Package ‘QTLRel’ was built on the R and C code that implemented the methodology de-
scribed in Cheng et al (2010). Users of the package can kindly cite the following papers:
a) Cheng R, Abney M, Palmer AA and Skol AD (2011). QTLRel: an R Package for

Genome-wide Association Studies in which Relatedness is a Concern. BMC Genet. 12: 66.

20

b) Cheng R, Lim JE, Samocha KE, Sokoloff G, Abney M, Skol AD and Palmer AA (2010).
Genome-wide association studies and the problem of relatedness among advanced intercross

lines and other highly recombinant populations. Genetics 185: 1033-1044.

We wish you success in your research!

References

Abney M, McPeek MS, Ober C (2000) Estimation of variance components of quantitative
traits in inbred populations. Am J Hum Genet 141:629-650

Cheng R, Lim JE, Samocha KE, Sokoloff G, Abney M, Skol AD, Palmer AA (2010) Genome-
wide association studies and the problem of relatedness among advanced intercross lines

and other highly recombinant populations. Genetics 185:1033-1044

Cheng R, Abney M, Palmer AA, Skol AD (2011) Qtlrel: an R package for genome-wide

association studies in which relatedness is a concern. BMC Genetics 12:66

Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, vol 5. Sinauer Asso-

ciates, Inc

21

	Table of Contents
	1 Introduction
	2 Install and Load Package
	3 Data Formats
	4 Statistical Models
	5 Condensed Identity Coefficients
	6 Variance Components
	7 Performing Genome Scans
	8 Empirical Thresholds
	9 Plotting
	10 Miscellaneous
	11 Citation

